Convolutional Recurrent Predictor: Implicit Representation for Multi-Target Filtering and Tracking
نویسندگان
چکیده
منابع مشابه
Sensor management for multi-target tracking via Multi-Bernoulli filtering
In multi-object stochastic systems, the issue of sensor management is a theoretically and computationally challenging problem. In this paper, we present a novel random finite set (RFS) approach to the multi-target sensor management problem within the partially observed Markov decision process (POMDP) framework. The multi-target state is modelled as a multi-Bernoulli RFS, and the multi-Bernoulli...
متن کاملMulti-Target Tracking Using Hierarchical Convolutional Features and Motion Cues
In this paper, the problem of multi-target tracking with single camera in complex scenes is addressed. A new approach is proposed for multi-target tracking problem that learns from hierarchy of convolution features. First fast Region-based Convolutional Neutral Networks is trained to detect pedestrian in each frame. Then cooperate it with correlation filter tracker which learns target’s appeara...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملParticle Filtering For Target Tracking
Particle filtering is a sequential Monte Carlo technique that recursively computes the posterior probability density function using the concept of “Importance Sampling”. This paper considers the application of particle filtering technique to a target tracking application, in which a radar sends a signal towards a target and estimates the state (position and velocity) of the target using the obs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2019
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2019.2931170